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Abstract 

In this systematic review and meta-analysis, we explore how the time scale of practice affects patterns 

of brain activity associated with motor skill acquisition. Fifty-eight studies that involved skill learning 

with healthy participants (117 contrasts) met inclusion criteria. Two meta-contrasts were coded: 

decreases:  peak coordinates that showed decreases in brain activity over time; increases: peak 

coordinates that showed increases in activity over time. Studies were grouped by practice time scale: 

short (≤1 hrs; 25 studies), medium (>1 and ≤24 hrs; 18 studies), and long (>24 hrs to 5 weeks; 17 

studies). Coordinates were analyzed using Activation Likelihood Estimation to show brain areas that 

were consistently activated for each contrast. Across time scales, consistent decreases in activity were 

shown in prefrontal and premotor cortex, the inferior parietal lobules, and the cerebellar cortex. Across 

the short and medium time scales there were consistent increases in supplementary and primary motor 

cortex and dentate nucleus. At the long time scale, increases were seen in posterior cingulate gyrus, 

primary motor cortex, putamen, and globus pallidus. Comparisons between time scales showed that 

increased activity in M1 at medium time scales was more spatially consistent across studies than 

increased activity in M1 at long time scales. Further, activity in the striatum (viz. putamen and globus 

pallidus) was consistently more rostral in the medium time scale and consistently more caudal in the 

long time scale. These data support neurophysiological models that posit that both a cortico-cerebellar 

system and a cortico-striatal system are active, but at different time points, during motor learning, and 

suggest there are associative/premotor and sensorimotor networks active within each system.  
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1. Introduction 

Numerous, non-systematic reviews have been conducted on the behavioural and physiological changes 

that accompany practice and the acquisition of motor skills (e.g., Hikosaka et al., 2002; Willingham, 

1998). The main focus of past work has been on changes in brain activity that underlie improved speed 

and accuracy in sequence learning or visuomotor adaptations (e.g., Dayan & Cohen, 2011; Doyon et al., 

2009; Wadden et al., 2012). Based on data from neuroimaging (e.g., fMRI, PET) and cortically-induced 

perturbations (e.g., TMS), neurophysiological theories of motor learning advance the idea that skill 

acquisition and ultimately long term learning is supported by cortico-thalamic-cerebellar and cortico-

thalamic-striatal systems (e.g., Hikosaka et al., 2002; Doyon et al., 2009).  

 Experimental evidence from individual studies also demonstrate distinct "associative/premotor" 

(AP) and "sensorimotor" (SN) networks that operate within the cortico-cerebellar and cortico-striatal 

systems. The AP network includes the dorsolateral prefrontal cortex, rostral premotor areas, the inferior 

parietal cortex, cerebellar cortex, and rostral basal ganglia. The SN network consists of supplementary 

and primary motor cortices, caudal basal ganglia, and the dentate nucleus (Coynel et al., 2010; Lehéricy 

et al., 2005; see also Hikosaka et al., 2002). These networks operate on different time scales with AP 

areas contributing to early-stage performance and SN regions supporting performance at later stages of 

practice. However, the time course of shifts within and between the networks that support motor 

learning remains to be determined. Recently, a meta-analysis was performed to distinguish brain areas 

associated with learning two types of motor tasks: sensorimotor adaptation versus the serial reaction 

time (SRT) task (Hardwick et al. 2013). However, a limitation in this work was the omission of time-

dependent analyses. 

Motor learning has been defined as “relatively permanent changes in the capability for skilled 

behaviour" resulting from practice or experience that is typically assessed by a delayed retention test 

(Schmidt & Lee, 2005, p. 302).  The need to differentiate performance and learning effects is based on a 



Motor Learning     4 
 

substantial body of research showing differences in behaviour when it is assessed at the end of a 

practice session as compared to following a delay (typically 24 hours to 1 week after practice has 

concluded; Kantak & Winstein, 2012). Group differences noted during practice have been shown to 

disappear (e.g., Feijen et al., 2010; Winstein et al., 1994), appear (Abe et al., 2011), or even reverse 

following a retention interval (Lee & Simon, 2004). Indeed, as many as 63 % of studies show a lack of 

consistency in performance effects between immediate and delayed testing sessions, when those 

testing sessions are delayed by >24 hrs (Kantak & Winstein, 2012). There are also empirical 

demonstrations of change in both behavioural and neural data when a delay is introduced between 

practice and retention testing, referred to as motor memory consolidation (Debas et al., 2010; 

Robertson et al., 2004, Shadmehr & Holcomb, 1997). Thus, changes in behavior  that occur within a 

session could represent early stages of learning and/or transitory changes in performance (what Doyon 

et al., 2009 have referred to as “fast learning processes”), making it important to distinguish this early or 

“fast” learning from more permanent "slow" learning processes which take place over longer time 

spans.  

 In view of these distinctions, the duration of practice was the primary variable of interest in our 

meta-analysis.  Operationally, we divided practice into three time scales: short (≤1 hr), medium (>1 hr to 

≤ 24 hrs), and long (>24 hrs to 5 weeks). Dividing practice sessions within a single day into short and 

medium time scales is motivated by similar distinctions made by Karni et al. (1998), who noted 

behavioural and neurophysiological changes across these time scales. Changes observed over long time 

scales meet the criterion of inclusion of a delayed retention test and therefore are more likely to reflect 

brain activity associated with learning.  By controlling for the time scale of practice and combining large 

numbers of studies, we can delineate which brain regions are active following relatively short to 

moderate time scales of practice from more long-term changes and resolve some of the heterogeneous 

results in neuroimaging studies of skill acquisition.  
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2. Method 

2.1 Literature search 

We searched for studies published in or translated to English in the following databases: PsycINFO 

(EBSCO), Google Scholar, and PubMed. Search terms included combinations of “motor learning” and 

“skill acquisition” with one of the following, “neuroimaging”, “fMRI”, and “PET”. The initial search was 

conducted in February 2013 and updated until January 2014. Further literature was obtained through 

reference lists of included papers.  

2.2 Inclusion criteria 

Analysis was restricted to experimental studies, but all time scales of learning were considered. Time 

scales were calculated based on methodological information provided in the study. Two coders (KRL and 

KW) calculated the time scale of practice for each study based on the time between first and last 

measurements of brain activity. When there was disagreement the authors discussed the study in 

question until consensus was reached. There were three time scales: short-term studies (short) which 

were ≤1 hr (the shortest of which was ~12 min; Inoue et al 1997); medium-term studies (medium) which 

were >1 hr and ≤24 hrs (the longest of which was 12 hrs1); and long-term studies (long) which were >24 

hours (the longest of which was 5 weeks; Karni et al., 1995). For short studies, the comparison of the 

earliest to the last measurement was between brain activity at time zero to activity less than one hour 

later. This same contrast for long studies was based on a comparison of brain activity at time zero to 

several days, or even weeks later. Thus, increases or decreases (defined below) are always a comparison 

from the last time point measured (which could be minutes, hours, or days depending on the time scale) 

to the earliest brain scan.  

 Different tasks were included, but all involved the upper extremities. Different contrasts for 

assessing learning were included, provided that there was at least one learning based contrast in the 

study (that is, comparing performance at an early time point to a later time point, following practice). 
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Because we were using a coordinate-based meta-analysis, studies for which peak coordinates were not 

available were excluded. Four studies (Karni et al., 1995; Ma et al., 2010, Seitz et al., 1990; Seitz et al., 

1992) did not directly report peak activation foci, but foci were estimated from descriptions in the text, 

provided figures, and consulting the Talairach daemon (Lancaster et al., 2000). Estimated coordinates 

accounted for 2.2% of the total data (21 out of 958 total foci).  

Participants had to be healthy adults (18-50 years); developmental, geriatric, or clinical 

populations were excluded. After screening by title and abstract, a total of 58 studies and 117 separate 

contrasts were included in the meta-analysis (Table 1). All of the studies included a behavioural measure 

of learning in addition to neuroimaging measures.  

The time scales of studies differed considerably, as did task type, and the original contrast. In 

order to be analyzed together, peak coordinates (foci) from these studies were re-coded to fit into one 

of two meta-contrasts. Comparisons were made in what we refer to as “decreases” (i.e., Early > Late 

meta-contrast), which reflects decreasing brain activation over time, or “increases” (i.e., Late > Early 

meta-contrast), reflecting increasing brain activation over time. Details of these two meta-contrasts are 

shown in Figure 1. 

Decreases in brain activation over time included comparisons of early - late blocks (e.g., scan 1 - 

scan 3; Grafton et al., 1994; Grafton et al., 2002), a pre- to post-test interval (e.g., Ma et al., 2010) or 

across multiple scans that included baseline measures (e.g., [activation 1 - control 1]-[activation 4 - 

control 4];  Lehéricy et al., 2005). In some sequence learning studies a random or new sequence served 

as the control and activation in this condition was compared to a (pre)learned sequence (e.g., Debaere 

et al., 2004; Doyon et al., 1996).  
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Figure 1. The number of studies at each time scale (k) and, of those studies, the number of independent 
groups contributing to each meta-contrast (n). In revised ALE (Turkletaub et al., 2012) data are entered 
by participant group rather than by published study. Thus, studies with multiple groups of participants 
(e.g., Sakai et al, 2002) count for k = 1 and n = 2. Time scale classification refers to the length of the 
experimental protocol.  

 

 

 Increases in brain activation over time included the opposite contrasts, where activity at a later 

scan was greater than an earlier scan (e.g., [activation 4 - control 4]-[activation 1 - control 1],  scan 3 - 

scan 1 or late - early Blocks; Lehéricy et al., 2005; Ma et al., 2010; Penhune et al., 2002, respectively). 

Thus, both meta-contrasts reflect differences in brain activity during task performance at different time 

points. These meta-contrasts are sensitive to changes in the neural networks active during control of 

movement, but are insensitive to areas that are consistently involved in motor control.  
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Table 1. Summary of studies and contrasts used in the meta-analysis. 

Reference Modality Contrasts 
Extracted 

Foci Extracted 
by Contrast 

Participants  Time Code in 
Meta-

Analysis 

Albouy et al., 2012 fMRI 1 12 30 Short 
Anguera et al., 
2007 

fMRI 1 4 11 Short 

Bischoff-Grethe et 
al. 2004 

fMRI 2 38/15 24 Short 

Debaere et al., 
2004 

fMRI 2 9/15 12 Long 

Debas et al., 2010 fMRI 4 12/5/17/3 24/24 Medium 
Deiber et al., 1997 PET 1 4 7 Long 
Doyon et al., 1996 PET 2 7/4 14 Short 
Doyon et al., 2002 fMRI 4 3/1/6/2 9 Medium 
Fernández-Seara 
et al. 2009 

fMRI 2 7/26 14 Short 

Fischer et al. 2005 fMRI 2 9/6 8 Long 
Floyer-Lea & 
Matthews, 2005 

fMRI 3 9/3/3 15/7 Short & Long 

Gheysen et al., 
2010 

fMRI 2 1/20 22 Short 

Gobel et al., 2011 fMRI 2 2/9 18 Short 
Grafton et al., 
1992 

PET 1 3 6 Short 

Grafton et al., 
1994 

PET 4 9/3/4/2 8 Short & Long 

Grafton et al., 
1995 

PET 2 7/4 12 Medium 

Grafton et al., 
2001 

PET 2 7/3 7 Short 

Grafton et al., 
2002 

PET 2 21/9 8 Short 

Graydon et al., 
2005 

fMRI 2 5/12 24 Short 

Hazeltine et al., 
1997  

PET 4 9/8/8/4 11 Medium 

Honda et al., 1998 PET 1 3 21 Medium 
Inoue et al., 1997 PET 1 19 6 Short 
Inoue et al., 2000 PET 1 5 6 Short 
Jenkins  et al., 
1994 

PET 2 21/18 12 Medium 

Jueptner et al., 
1997 

PET 1 21 12 Medium 
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Karni et al., 1995 fMRI 1 2 6 Long 
Krakauer et al., 
2004 

PET 1 7 12 Short 

Krebs et al., 1998 PET 2 15/19 8 Medium 
Lefebvre et al., 
2012 

fMRI 1 4 20 Short 

Lehéricy et al., 
2005 

fMRI 2 17/3 14 Long 

Ma et al., 2010 fMRI 2 2/2 10 Long 
Matsumura et al., 
2004 

PET 1 4 13 Medium 

Müller et al., 2002 fMRI 2 12/7 8 Short 
Olson et al., 2006 fMRI 1 3 10 Medium 
Parsons et al., 
2005 

fMRI 2 14/3 12 Long 

Penhune et al., 
1998 

PET 2 14/7 12 Medium 

Penhune & Doyon, 
2002 

PET 4 4/5/11/7 9 Long 

Peterson/Van 
Mier et al., 1998 

PET 2 6/6 16 Medium 

Poldrack et al, 
2005 

fMRI 1 8 14 Long 

Puttemans et al., 
2005 

fMRI 4 3/5/4/6 11 Long 

Remy et al., 2008 fMRI 2 5/2 12 Long 
Ronsse et al., 2010 fMRI 2 8/1 38 Long 
Sakai et al., 2002 PET 4 8/7/11/5 12/8 Short 
Schendan et al., 
2003 

fMRI 2 8/8 17 Medium 

Schlaug et al., 
1994 

PET 1 1 9 Short 

Seitz et al., 1990 PET 2 3/5 9 Medium 
Seitz et al., 1992 PET 2 1/6 9 Medium 
Seitz et al., 1994 PET 2 3/1 8 Short 
Shadmehr & 
Holcomb, 1997 

PET 2 3/2 9 Medium 

Steele et al., 2010 fMRI 4 24/12/14/26 15 Long 
Toni et al., 1998 fMRI 2 9/4 3 Short 
Toni et al., 1999 PET 4 4/4/4/5 10 Short 
Tracy et al., 2001 fMRI 2 18/19 5 Short 
Tracy et al., 2003 fMRI 1 5 12 Long 
Van der Graaf et 
al., 2004 

fMRI 2 7/6 18 Long 
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Van Horn et al., 
1998 

PET 2 22/10 15 Short 

Willingham et al., 
2002 

fMRI 1 7 22 Medium 

Wu et al., 2004 fMRI 1 13 12 Medium 
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Table 1 (cont.). Summary of studies and contrasts used in the meta-analysis. 

Reference Task Hand Foci Extracted   

Albouy et al., 2012 Explicit sequence learning. L ND Table 1 
Anguera et al., 2007 Visuomotor adaptation R D Table 4 
Bischoff-Gerthe et al., 
2004 

Explicit sequence learning R D Table 1 

Debaere et al., 2004 Bimanual coordination task L and R Table 2 
Table 3.  

Debas et al., 2010 Sequence learning and 
reach adaptation 

L ND Supplemental Table 1.  
Supplemental Table 2.  

Deiber et al., 1997 Conditional joystick 
movements* 

R D Table 3.  
Table 4.  

Doyon et al., 1996 Implicit sequence learning R D Table 1. 
Table 2.  

Doyon et al., 2002 Explicit sequence learning R D 1 

Fernández-Seara et al., 
2009 

Explicit sequence learning R D Table 4. 

Fischer et al., 2005 Explicit sequence learning L ND Table 2. 
Table 3. 

Floyer-Lea & Matthews, 
2005 

Force production sequence R D Table 1.  

Gheysen et al., 2010 Implicit sequence learning L and R  
 

1 

Gobel et al., 2011 Serial Interception 
Sequence Learning 

L and R 
 

Table 1.  

Grafton et al., 1992 Pursuit rotor task R D Table 2.  
Grafton et al., 1994 Pursuit rotor task R D Table 1.  

Table 2.  
Grafton et al., 1995 Six item serial reaction time R D Table 1.  

Table 3.  
Grafton et al., 2001 Continuous tracking with an 

embedded and random 
sequence 

R D Table 2.  
Table 5.  

Grafton et al., 2002 Implicit sequence learning L ND Table 2  
Graydon et al., 2005 Joy stick reaches with a 

visuo-motor rotation. 
R D Table 2.  

Hazeltine et al., 1997 Implicit and explicit 
sequence learning 

R D Table 1.  
Table 2.  

Honda et al., 1998 Implicit and explicit 
sequence learning 

R D Table 2. 

Inoue et al., 1997 Visuomotor adaptation R D Table 2.  
Table 3. 

Inoue et al., 2000 Visuomotor adaptation R D Table 3. 
Jenkins  et al., 1994 Trial and error sequence R D Table 5.  
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learning Table 6.  
Jueptner et al., 1997 Trial and error sequence 

learning 
R D Table 1.  

Karni et al., 1995 Explicit sequence learning ND 5L, 1R 2  

Krebs et al., 1998 Target reaching with novel 
dynamics 

R D Table IIa.  
Table IIb.  

Krakauer et al., 2004 Visuomotor adaptation R D Table 2. 
Lefebvre et al., 2012 Implicit visuomotor learning L ND  Table 3. 
Lehéricy et al., 2005 Explicit sequence learning L ND 1 and supporting 

information. 
Ma et al., 2010 Explicit sequence learning L ND 2 

Matsumura et al., 2004 Two ball rotation task L and R Table 4 
Müller et al., 2002 Explicit sequence learning D 7R, 1L Table 5 
Olson et al., 2006 Implicit sequence learning L and R Table 2 
Parsons et al., 2005 Explicit sequence learning R D Table 2 
Penhune et al., 1998 Audio and visual rhythm 

learning 
R D Table 3.  

Penhune & Doyon, 2002 Visual rhythm learning R D Table 2.  
Table 4.  

Peterson/Van Mier et 
al., 1998 
 

Maze tracing R D Table 7. 

Poldrack et al, 2005 Implicit sequence learning 
w/o secondary task 

Not Clear Table 3.  

Puttemans et al., 2005 Bimanual cyclical wrist 
movements 

L and R Table 2.  
Table 3.  

Remy et al., 2008 Bimanual cyclical wrist 
movements 

L and R Table 1.  
 

Ronsse et al., 2010 Bimanual cyclical wrist 
movements 

L and R Table 1 

Sakai et al., 2002 Learning of a timed 
sequence  

R D Table 1.  
Table 2. 

Schendan et al., 2003 Implicit and explicit 
sequence learning 

R D Table 1.  
Table 2.  

Schlaug et al., 1994 Explicit sequence learning R D Table 2.  
Seitz et al., 1990 Explicit sequence learning  R D 2 

Seitz et al., 1992 Explicit sequence learning R D 2 

Seitz et al., 1994 Writing novel ideograms R D Table 1 
Shadmehr & Holcomb, 
1997 

Reaching in a novel force 
field 

R D 1 

Steele et al., 2010 Temporal motor sequence 
learning 

R D Supplemental Table 2 
Supplemental Table 3 

Toni et al., 1998 Trial and error sequence 
learning 

R D 1 



Motor Learning     13 
 

Toni et al., 1999 Conditional visuomotor task 
and sequence learning task 

R D Table 3 
Table 4  

Tracy et al., 2001 Explicit sequence learning R D Table 1 
Table 2 

Tracy et al., 2003 Knot tying L and R Table 1 
Van der Graaf et al., 
2004 

Implicit sequence learning L and R Table 3 

Van Horn et al., 1998 Maze learning in a 10 x 10 
matrix  

R  
D and ND 

Table 1  

Willingham et al., 2002 Explicit and implicit 
sequence learning 

L and R Table 2  
Table 3  

Wu et al., 2004 Explicit sequence trained to 
automaticity 

R D Table 2 

Note. fMRI = functional magnetic resonance imaging. PET = positron emission tomography. If more than 
one number is given in the column "Foci Extracted" then multiple contrasts from the same experiment 
have been included in the meta-analysis. Meta-analysis time codes for experimental protocols ≤1 hrs 
(short), protocols >1 and ≤24 hrs (medium), and protocols > 1 day (long). All experiments used the upper 
extremities but differed with respect to the hand used, either the left hand (L), the right hand (R) or 
bimanual (L and R). We also indicate if this was the dominant (D) or non-dominant hand (ND) for 
participants. The location of extracted foci is given as either the table in the original paper, foci that 
were extracted from text (1), or foci that were estimated from the text (2). The full dataset of studies and 
peak coordinates used in the meta-analysis are available from the first author upon request. 
* Deiber et al (1997) was primarily a stimulus-response learning task, but there were specific spatial and 
temporal motor requirements. 
 

 

2.3 Meta-analysis 

Analyses were performed with GingerALE 2.1 (brainmap.org) using a modified algorithm for Activation 

Likelihood Estimation (ALE; Turkeltaub et al., 2012). ALE converts peak activation coordinates within a 

study into a Gaussian probability distribution centered at the given coordinates (Eickhoff et al., 2009; 

Laird et al., 2005). The width of these distributions is calculated based on empirical data about variability 

in spatial normalization, and the relationship between sample size and inter-participant localization 

(Eickhoff et al., 2009). Recent modifications to the ALE algorithm (Turkeltaub et al., 2012) correct for 

different numbers of brain activations between experiments (reducing the influence of a single study 

reporting many coordinates) and reduce the influence of multiple contrasts being measured from a 
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single group of participants. The modified ALE algorithm allows computation of the voxel-wise joint 

probability of brain activation within a group of participants. The voxel-wise joint probability is then 

calculated between these independent activation maps, controlling for multiple foci from the same 

group of participants. Thus, ALE measures the spatial consistency between studies, providing a metric of 

brain activation weighted by the inverse of the variance across studies.  

 All Montreal Neurologic Institute (MNI) coordinates were converted to Talairach space before 

analysis (Lancaster et al., 2007). Following spatial normalization, the meta-analysis was conducted in 

two phases. First, we calculated main effects that show consistency (spatial convergence between 

studies) for increases and decreases in brain activity at the short, medium, and long time scales 

separately (6 main effects in total). Next, we compared the short to the medium and the medium to the 

long time scales, which allowed us to make relative conclusions about how well represented a brain area 

was within one time scale compared to another time scale (i.e., the relative consistency across studies). 

For example, brain regions showing increases in the short time scale were compared to brain regions 

showing increases in the medium time scale. For these increases, the comparison Short > Medium 

reflects greater consistency for increasing activity at the short time scale. Conversely, the comparison 

Medium > Short reflects greater spatial consistency for increasing activity across studies at the medium 

time scale (8 comparisons between time scales).  

 In all analyses, ALE maps were based on a false discovery rate (FDR) of q < .05 as a correction for 

multiple comparisons (Genovese et al., 2001) and a minimum cluster size of 200 mm3. We also 

reanalyzed our data using a more conservative q < .001 and minimum cluster size of 50mm3. Clusters 

that remained significant at q < .001 are indicated by a “†” in the tables and ALE values in the figures are 

colour-coded to show significant increases in activity (red = q < .05; yellow = q < .001) and decreases in 

activity (blue = q <. 05; green = q <. 001). Significant clusters were identified and labeled based on the 

weighted centre of the cluster in Talairach space (Lancaster et al., 2000). In our Tables we use labels 
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corresponding to the centre of the cluster. In the text we point out instances when clusters spanned 

multiple brain areas. Resulting ALE maps were superimposed on a Talairach template brain (Kochunov et 

al., 2002) using the Multi-Image Analysis Gui (http://ric.uthscsa.edu/mango/), shown in Figure 2.  

 

3. Results 

3.1 Short studies only 

 3.1.1 Decreases. Across studies, there were spatially consistent decreases centered in bilateral 

prefrontal cortex, left presupplementary motor area, the right inferior and bilateral superior parietal 

lobules, the left precuneus, and right inferior temporal gyrus (Table 2). Subcortically, there were 

decreases centered in the right posterior cerebellar cortex. 

 3.1.2 Increases. Areas of consistent increasing activity were centered in M1 bilaterally, the left 

SMA, the left premotor cortex, the left posterior cingulate cortex, bilateral precuneus, and the left 

middle occipital gyrus. Subcortically, there were increases in the left globus pallidus, the right thalamus, 

and the anterior and posterior cerebellar cortex. Increases in the anterior cerebellum included the 

dentate nucleus.  
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Figure 2. Significant increases and decreases for short, medium, and long time scale studies. ALE volumes significant below a brain-wise FDR = 
.05 are shown for decreases: blue/green and increases: red/yellow. Colour gradients reflect statistical significance for individual voxels. Red/blue 
areas are significant at a brain-wise FDR of q < .05; yellow/green areas remain significant at a brain-wise FDR of q < .001.  
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Table 2. Summary of significant clusters for studies with a short time scale (≤1 hr); FDR = .05, minimum 
cluster size = 200 mm3. 

   Cluster Centroid Brain Region 

Contrast ALE Volume 
(mm3) 

X Y Z Hemisphere Label Brodmann 
Area 

Decreases .014 1144 31 -62 -27 R Post. Cere.  
 .016† 1096 46 -36 40 R IPL BA 40 
 .016† 1064 -10 -66 45 L Precuneus BA 7 
 .014 880 42 -57 -2 R Temporal BA 19 
 .013 568 46 -32 -18 R Temporal BA 20 
 .014 560 44 -66 38 R Parietal BA 39 
 .012 464 -42 28 30 L DLPFC BA 9 
 .013 456 42 44 3 R DLPFC BA 46 
 .011 384 36 26 29 R DLPFC BA 9 
 .014 360 -26 -75 42 L Precuneus BA 19 
 .013 328 -24 -5 53 L Sub-gyral BA 6 
 .012 296 -31 -57 55 L SPL BA 7 
 .012 272 -3 3 52 L* Pre-SMA BA 6 
 .011 216 31 -70 52 R SPL BA 7 
         

Increases .018† 1520 29 -26 56 R M1 BA 4 
 .016† 1392 -2 -13 52 L* SMA BA 6 
 .017† 704 14 -20 5 R Thalamus  
 .013 640 -4 -72 36 L Precuneus BA7 
 .012 568 -29 -17 55 L M1 BA 4 
 .015 528 9 -72 35 R Precuneus BA 7 
 .014 520 -45 -31 44 L IPL BA 40 
 .013 416 -36 -65 42 L Precuneus BA 19 
 .014 376 21 -56 -23 R Ant. Cere.DN  
 .013 360 -16 -47 -20 L Ant. Cere.DN  
 .012 280 -23 -58 -43 L Post. Cere.  
 .011 264 -14 -7 2 L Globus Pallidus  
 .012 232 -1 -48 21 L* PCG BA 30 
 .012 208 -54 2 29 L PMC BA 6 
 .012 200 -27 -85 0 L MOG BA 18 

Note. Post. Cere. = posterior cerebellar cortex; IPL = inferior parietal lobule; DLPFC = dorsolateral pre-
frontal cortex; SPL = superior parietal lobule; SMA = supplementary motor area; M1 = primary motor 
cortex; Ant. Cere. = anterior cerebellum; PCG = posterior cingulate gyrus; MOG = middle occipital gyrus; 
PMC = premotor cortex. 
† = a cluster that remains significant when the false discovery rate is more conservative, q < .001. 
DN = denotes a cluster of activation that included the dentate nucleus. 
* = a cluster with an x-coordinate between 3 and -3. While the centroid of the cluster lies in a particular 
hemisphere, the cluster extends bilaterally. 
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3.2 Medium studies only 

 3.2.1 Decreases. There were consistent decreases in activity in DLPFC bilaterally, the left 

anterior prefrontal cortex, the right anterior cingulate, and right somatosensory motor cortex. The 

cluster of decreasing activity centered in right S1 also included right M1. There were clusters of 

decreasing activity in the precuneus bilaterally, the right inferior and superior parietal lobules, the right 

insula, and the right superior temporal gyrus. Subcortically, there were decreases in the left globus 

pallidus and the anterior cerebellum bilaterally. See Table 3. 

 3.2.2 Increases. Consistent increases in cortical activity were found in left M1, the left SMA (this 

cluster included posterior cingulate gyrus), left sub-gyral cortex near BA 10, the left insula, the right IPL 

and the right precuneus. Subcortically, there were increases in the right thalamus, the right putamen, 

and the right anterior cerebellum. Clusters of increasing activity in the anterior cerebellum included the 

dentate nucleus. 
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 Table 3. Summary of significant clusters for studies with a medium time scale (>1 hr but ≤24 hrs); FDR = 
.05 minimum cluster size = 200 mm3. 

   Cluster Centroid Brain Region 

Contrast ALE Volume 
(mm3) 

X Y Z Hemisphere Label Brodmann 
Area 

Decreases .018† 1312 38 -53 44 R IPL BA 40 
 .014† 1056 38 16 4 R Insula BA 13 
 .015† 960 4 27 29 R ACG BA 32 
 .013 840 40 28 27 R DLPFC BA 9 
 .012 560 -21 -59 54 L Precuneus BA 7 
 .014† 480 28 -68 36 R Precuneus BA 7 
 .011 440 -10 1 7 L Globus Pallidus  
 .012 424 -45 28 29 L DLPFC BA 9 
 .010 408 -26 -51 -27 L Ant. Cere.  
 .012 368 24 -51 -19 R Ant. Cere.  
 .011 312 51 -48 8 R Temporal BA 22 
 .011 304 -31 42 20 L APFC BA 10 
 .010 256 49 -40 13 R Temporal BA 21 
 .009 256 15 -63 52 R Precuneus BA 7 
 .011 256 32 -29 60 R S1 BA 3 
 .010 208 -5 -24 4 L Thalamus  
 .009 208 23 -55 58 R SPL BA 7 
 .009 200 -38 28 23 L DLPFC BA 46 
         

Increases .027† 3864 -33 -24 55 L M1 BA 4 
 .019† 1344 25 0 3 R Putamen  
 .018† 1224 21 -56 -18 R Ant. Cere.DN  
 .015† 816 -46 -24 17 L Insula BA 41 
 .013 528 -37 -45 -35 L Post. Cere.  
 .012 496 4 -23 6 R Thalamus  
 .013 392 9 -55 -10 R Ant. Cere.  
 .014 368 48 -32 33 R IPL BA 40 
 .011 352 57 -20 17  R Parietal BA 40 
 .011 208 -34 46 0 L Sub-gyral  
 .009 208 -4 -11 51 L SMA BA 6 
 .011 208 12 -65 52 R Precuneus BA 7 

Note. IPL = inferior parietal lobule; ACG = anterior cingulate gyrus; DLPFC = dorsolateral prefrontal 
cortex ; Ant. Cere. = anterior cerebellum; APFC = anterior prefrontal cortex; S1 = primary somatosensory 
cortex; SPL = superior parietal lobule; M1 = primary motor cortex; Post. Cere. = posterior cerebellum; 
SMA = supplementary motor area. 
† = a cluster that remains significant when the false discovery rate is more conservative, q < .001 
DN = denotes a cluster of activation that included the dentate nucleus. 
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3.3 Long studies only 

 3.3.1 Decreases. Across studies, there were consistent decreases in activation in the right 

DLPFC, the PMC and Pre-SMA bilaterally, the left anterior cingulate, the right insula, and the right 

superior and bilateral inferior parietal lobules. Subcortically, there were decreases in activation across 

time in the thalamus and the left posterior cerebellar cortex. See Table 4.  

 3.3.2 Increases. Consistent increases in activation were shown in the posterior cingulate gyrus, 

medial frontal gyrus and precuneus bilaterally. There were also consistent increases in left M1, the right 

middle and left superior temporal gyri. Subcortically, consistent increases were noted in the putamen 

and the globus pallidus bilaterally.  

 

Table 4. Summary of significant clusters for studies with a long time scale (>24 hrs); FDR = .05 minimum 
cluster size = 200 mm3. 

   Cluster Centroid Brain Region 

Contrast ALE Volume 
(mm3) 

X Y Z Hemisphere Label Brodmann 
Area 

Decreases .015† 1704 33 35 33 R DLPFC BA 9 
 .013 1488 1 1 47 R* Pre-SMA BA 6 
 .016† 704 -23 -12 52 L PMC BA 6 
 .015† 696 36 -39 42 R IPL BA 40 
 .012 600 43 3 33 R PMC BA 6 
 .013 576 32 17 9 R Insula BA 13 
 .011 536 14 -16 15 R Thalamus  
 .011 536 24 -9 58 R PMC BA 6 
 .014 432 -17 -71 -35 L Post. Cere.  
 .012 328 -3 -73 -20 L Post. Cere.  
 .011 304 -15 -63 52 L SPL BA 7 
 .011 280 -18 -11 15 L Thalamus  
 .011 280 13 -10 67 R PMC BA 6 
 .011 240 -37 -47 44 L IPL BA 40 
 .010 232 -5 -15 66 L Pre-SMA BA 6 
 .010 200 -7 28 26 L ACG BA 32 
 .010 200 43 -42 55 R IPL BA 40 
         

Increases .024† 3304 25 -6 -1 R Putamen  
 .011 624 -18 5 -4 L Putamen  
 .012 576 1 46 -15 R* Medial Frontal BA 11 
 .012 392 -2 -49 32 L* Precuneus BA 31 
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 .011 376 45 -56 22 R Temporal BA 39 
 .012 368 -34 -15 47 L M1 BA 4 
 .012 352 -16 0 9 L Globus Pallidus  
 .009 240 3 -58 13 R* PCG BA 30 
 .009 200 -52 -59 29 L Temporal BA 39 

Note. DLPFC = dorsolateral prefrontal cortex; SMA = supplementary motor area; PMC = premotor 
cortex; IPL = inferior parietal lobule; Post. Cere. = posterior cerebellum; SPL = superior parietal lobule; 
ACG = anterior cingulate gyrus; PCG = posterior cingulate gyrus.  
† = a cluster that remains significant when the false discovery rate is more conservative, q < .001. 
* = a cluster with an x-coordinate between 3 and -3. While the centroid of the cluster lies in a particular 
hemisphere, the cluster extends bilaterally. 
 
 

3.4 Comparison across time scales 

This analysis highlights differences in the consistency of the spatial convergence across studies, for both 

increasing activity and decreasing activity, as a function time scale. We compared the short to the 

medium studies and the medium to the long studies, shown in Table 5. When the short time scale 

showed more consistency across studies (for increasing or decreasing activity) than the medium time 

scale, we denoted this with the contrast symbols; S > M and highlight the area of difference in the table. 

When the medium time scale showed more consistency across studies (for increasing or decreasing 

activity) than the medium, we denote this with the contrast symbols; M > S in the table. The same 

symbols apply for comparisons between medium and long time scales. 

 3.4.1 Comparison of short and medium studies. As displayed in Table 5, at the short time scale, 

there was a cluster of decreasing activity in the left precuneus that was statistically more consistent than 

the medium time scale.  There were, however, clusters of decreasing activity in the left anterior 

prefrontal cortex and right inferior frontal gyrus that were more consistent for the medium than the 

short time scale. There was also a cluster of increasing activity in left M1/S1 that was statistically more 

consistent for the medium time scale than the short time scale.    
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Table 5. Contrast of short to medium and medium to long studies. FDR = .05 minimum cluster size = 50 
mm3. 

   Cluster Centroid Brain Region 

Contrast  Volume 
(mm3) 

X Y Z Hemisphere Label Brodmann 
Area 

Decreases S > M 536 -10 -66 43 L Precuneus BA 7 
 M > S 152 -31 42 19 L APFC BA 10 
  64 38 19 6 R IFG BA 45 
 M > L        
 L > M 80 28 46 33 R DLPFC BA 9 
         

Increases S > M        
 M > S 1464 -36 -25 55 L M1/S1 BA 4/BA 3 
 M > L 464 -38 -24 54 L M1/S1 BA 4/BA 3 
  56 21 -61 -17 R Post. Cere.  
 L > M 72 25 -10 -5 R Globus 

Pallidus 
 

Note. DLPFC = dorsolateral prefrontal cortex; APFC = anterior prefrontal cortex; IFG = inferior frontal 
gyrus; M1 = primary motor cortex; S1 = primary somatosensory cortex; Post. Cere. = posterior 
cerebellum. S = short-term studies; M = medium-term studies; L = long-term studies. 
 

 

 3.4.2 Comparison of medium and long studies. At the medium time scale, there were clusters of 

increasing activity in left M1 and in the right cerebellar cortex that were significantly more consistent 

than the long time scale. Conversely, for the long time scale, there was a cluster of increasing activity 

centered in the right globus pallidus that was significantly more consistent than the medium time scale, 

shown in Figure 3. At the long time scale, there was also a cluster of decreasing activity in the DLPFC that 

was more consistent than at the medium time scale. 
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Figure 3. Imaging results showing a shift from the rostral (R) to caudal (C) striatum as a function of time 
scale. Increasing activity is shown for the medium (red) and long (green) time scales. Spatial 
convergence was greater in the caudal-ventral striatum for the long time scale compared to the medium 
time scale (shown in blue, q < .05).  
 

 

4. Discussion 

Pooling data from studies across different time scales allowed us to compare patterns of brain activity 

associated with motor learning from the very early stages of practice, to moderate time scales, to long-

term changes that unfolded over days or weeks. Given these data, we show quantitative support for the 

hypothesis that there are cortico-cerebellar and cortico-striatal systems that are engaged during motor 

skill acquisition and that there is a general shift between the cortico-cerebellar to the cortio-striatal 

system with increased practice and motor learning. Evidence of this shift can be seen in the cerebellum. 

Cerebellar cortex showed decreases relative to baseline at all time scales, suggesting that activity in the 

cerebellar cortex is highest very early in practice. There was increased activity in the dentate nuclei at 

the short and medium time scales, but there was no evidence for reliable increases at the long time 

scale. Thus, the cerebellar cortex shows the highest levels of activity at the start of practice and then 

decreases as activity in the deep nuclei increase. The meta-data show, however, that these changes 

tend to occur within a session. 
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 There was also evidence of a shift from an associative/premotor network to a sensorimotor 

network (cf. Coynel et al., 2010; Lehéricy et al., 2005). In particular, there was evidence for this shift in 

the striatum, where the meta-analysis showed that short and medium studies were characterized by 

activity in the rostral-dorsal striatum whereas long term studies were defined by activity in the caudal-

ventral striatum. This is a strength of the meta-data approach, where averaging across different types of 

motor tasks reveals that the shift in activity from the rostral striatum to the caudal striatum is a robust 

pattern and that this shift occurs at time scales of 1 day or more. 

 Interestingly, there was also a nonlinear pattern of activity in left M1 over the three time scales. 

There were significant clusters of increasing activity at the short, medium, and long time scales. 

However, comparing short to medium, and medium to long time scales showed that the likelihood of 

left M1 activation was greater at the medium time scale than either the short or long time scales. This 

finding is consistent with experimental work showing that activation in M1 increases initially and then 

decreases following extended practice (Hluštik et al., 2004; Ma et al., 2010). However, other 

neuroimaging studies of motor sequence learning have shown increased M1 activity with long term 

practice (Karni et al., 1995;  Floyer-Lea & Matthews 2004; Penhune & Doyon, 2005; Steele & Penhune, 

2010). Thus, while increases in M1 are more consistent at the medium time scale than at the long time 

scale, the specific pattern of activity in M1 at the long time scale may be very specific to the task and the 

individual.  

 As with any meta-analysis, there is a concern about study selection. Our results are limited to 

those studies that were in English, published in peer-reviewed journals that involved the upper 

extremities and had neuroimaging data with published coordinates. Importantly, there were fewer long 

studies than short or medium studies. This may be partially a result of the expense associated with 

multi-day protocols in neuroimaging studies. However, delayed long-term retention and transfer tests 
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are critical to establishing learning effects in behavioural studies (Schmidt & Lee, 2005; Kantak & 

Winstein, 2012) and thus are also critical to understanding the neurophysiology of learning.  

 Handedness may also have influenced our data. As shown in Table 1, 36 studies reported 

practice with the dominant right hand, seven used the non-dominant left hand, and 11 studies used 

bimanual tasks that required coordination between both hands (handedness was not clear for Karni et 

al., 1995; Müller et al., 2002; Poldrack et al., 2005; Van Horn et al. 1998). As such, our data are sensitive 

but not specific to learning using the dominant right hand2. It is known that hand dominance and 

bimanual/unimanual learning conditions produce task-specific activation in the networks that support 

learning and performance (see Grafton et al., 2002; Debaere et al., 2004; Remy et al., 2008), whereas 

brain areas identified in this meta-analysis apply to motor learning more generally.   

4.1 Associative/premotor to sensorimotor progressions 

Our data demonstrate that when averaging across motor tasks, the AP network is more active at early 

compared to later intervals. Specifically, there were decreases in prefrontal and parietal cortex and the 

cerebellar cortex across all time scales, suggesting that these AP regions are most active at the 

beginning of practice. The SMA and the PMC showed increased activity at the short and medium time 

scales, but in long time scale studies, these areas showed decreased activity relative to baseline. This is 

consistent with a transitory role for the SMA/PMC (Hikosaka et al., 2002; Penhune & Steele, 2012), 

whereby these areas are involved in transitioning a movement from a spatial representation (supported 

by parietal and prefrontal cortex) to a motoric representation (supported by M1). 

 In the striatum, significant increases were shown in the rostral (associative) putamen, and 

globus pallidus at the short and medium time scales. At the long time scale, however, the caudal 

(sensorimotor) putamen and globus pallidus were significantly more likely to show increased activity 

(Table 5 and Figure 3). These patterns of subcortical activity suggest a functional gradient within the 

striatum, with activity shifting from associative regions to sensorimotor regions as practice progresses. 
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The time scale of change in the striatum was quite different from the cerebellum. Our analysis showed 

that the shift from cerebellar cortex to the deep nuclei (including the dentate) appears to take place 

within a session of practice, whereas the shift from associative to sensorimotor regions within the 

striatum took place over days. 

 These patterns of activation at the short time scale are supported by behavioural data that 

distinguishes a rapid motor-learning process from a slower, perceptual learning process (Dirnberger & 

Novak-Knollmueller, 2013). While both processes work in parallel, rapid improvements are dominated 

by motor processes that draw on cerebellar activation that support error corrections and externally 

guided movements. Slower improvements are likely based more on perceptual learning, relying on 

activation from the basal ganglia to self-initiate movements and predict stimulus-response associations 

(Dirnberger & Novak-Knollmueller, 2013).  Fast learning processes, as discussed by Karni et al. (1998), 

are similarly thought to involve both cortical and subcortical structures related to the cerebellum.  These 

changes in patterns of activity in the AP and SN networks also compliment behavioural data showing 

that early stages of motor learning are generally more cognitively demanding than later stages (Fitts & 

Posner, 1967; Newell, 1991). Studies comparing explicit and implicit learning have also found increased 

activity in prefrontal and parietal areas during explicit learning  compared to implicit learning (Doyon et 

al., 1996; Grafton et al., 1995; Willingham et al., 2002). Similarly, when participants were instructed to 

attend to a previously learnt (automatized) sequence, there was an increase in activity of the prefrontal 

cortex and anterior cingulate gyrus (Jueptner et al., 1997). These results suggest the AP network is more 

active when cognitive demands of the task are increased.  

4.2 Cortico-cerebellar and cortico-striatal systems 

 Our data support theories suggesting that there are parallel neural networks adapting at 

different rates which are responsible for motor control at different stages of performance and learning 

(Doyon et al., 2009; Penhune & Steele, 2012). These networks can be broadly classified as a cortico-
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cerebellar system and a cortico-striatal system. Both systems are probably involved in motor control at 

all stages of learning, but the relative contributions of each system depend on the nature of the task and 

the time scale of practice.  

 The existence of the cortico-cerebellar system is supported by anatomical evidence of 

connections between the cerebellum and parietal, premotor, and frontal cortex (see Penhune & Steele, 

2012; Ramnani, 2006 for review). The architecture of this system also fits well with computational 

theories of motor control that suggest internal models are located in the cerebellum (Ramnani, 2006; 

Shadmehr & Krakauer, 2008). In our analysis, activity decreased in the cerebellar cortex, but activity 

increased in the dentate nucleus at the short and medium time scales. The progression of activity from 

the cerebellar cortex to the deep nuclei, which then both return to baseline levels, suggests that 

encoding and refinement of internal models in the cerebellum likely occurs within a session (see also 

Penhune & Doyon, 2005). Rapid learning of the relationship between expected and actual sensory 

feedback may explain why adaptations in the cerebellum occur relatively quickly and are associated with 

decreases in activity in the cerebellar cortex (Floyer-Lea & Matthews, 2005; Lehéricy et al., 2005; 

Penhune & Doyon, 2002) and increases in the deep nuclei within a single practice session (Doyon et al., 

2002; Lehéricy et al., 2005).  In support of this role, TMS over the cerebellar cortex impaired the 

accuracy of reaching movements by interfering with estimation of the current position of the arm (Miall 

et al., 2007). Importantly, TMS disruption did not halt the movement (as would be predicted if the 

cerebellum was responsible for motor programming) but created dysfluency, disrupting the spatial 

accuracy of the movement (see also Bastian, 2006; Galea et al., 2010).  

 There is also a robust pattern across studies for a functional gradient in the striatum with 

activity shifting from the rostral-dorsal (associative) areas to the caudal-ventral (sensorimotor) areas 

with increased practice. The associative part of this system is hypothesized to be more important early 

in the learning process when prefrontal and parietal areas support a predominantly spatial 
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representation of a skill.  The sensorimotor portion of this system is more active later in learning when 

cognitive demands of the task have decreased (Doyon et al., 2009; Hikosaka et al., 2002; Lehéricy et al., 

2005). As a whole, the cortical-striatal system is hypothesized to be critical for encoding motor skills 

over long term practice, but the striatum does not seem to be the site of long-term storage of motor 

skills. Striatal lesions do not generally impair the recall of well learned sequences, instead lesions disrupt 

the learning of new sequences (Siegert et al., 2006) and slow the speed of movements (Desmurget & 

Turner, 2008).   

4.3 Conclusion 

 Our data confirm and strengthen many theories of how patterns of brain activity shift over time 

to support motor learning.  Given the difficulty and expense of neuroimaging it is challenging to 

assemble large imaging datasets across multiple time points in a single study, highlighting the utility of 

the meta-analytic approach. As more data become available there is also greater statistical power to 

answer meta-analytic questions about different types of tasks and moderators of learning effects. This is 

a direction for our future work, where we intend to expand the current database to include clinical trials 

for a range of neurological impairments. By subdividing our analysis across time scales, we were able to 

show reliable differences in the patterns of increasing and decreasing activation in motor learning that 

takes place over days compared to within a session (e.g., in M1, DLPFC, and the striatum), averaging 

across many different tasks. Short studies that do not have delayed retention tests may represent only 

transient effects associated with experimental variables. We recommend that future research adopt 

procedures that include testing brain activity following a retention interval in order for robust 

conclusions to be made about more permanent behavioural changes as well as the neural structures 

that support these changes.    
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Footnotes 

1The experiment by Debas et al (2010) had a 12 hour delay between training and retention testing. The 

authors were interested in the effects of sleep on motor memory consolidation. Thus, the "sleep" group 

practiced in the evening, slept, and 12 hours later were tested in the morning. The "no-sleep" group 

practiced in the morning, left the laboratory, and 12 hours later were tested in the evening. In order to 

avoid confounding effects of this manipulation, we only extracted learning-related foci that were 

common to both the sleep and no-sleep group (i.e., the extracted data represent the changes common 

to both groups and hence are independent of sleep effects).   

 

2We conducted a supplementary analysis restricted to studies reporting dominant right hand testing. At 

the short time scale, there were six clusters of significantly decreased activity and three of these clusters 

were also significant in the main analysis. Similarly, there were seven clusters of increased activity and 

all seven of these clusters were also significant in the main analysis. At the medium time scale, 17/17 

decreases and 6/6 increases were also found in the main analysis. At the long time scale, there were 

three clusters of decreased activity and two for these clusters were also significant in the main analysis. 

Similarly, there were four clusters of increased activity and all four were significant in the main analysis. 

Thus, the main analysis generally included areas of activation that are seen for the right hand, however, 

additional areas were found in the main analysis that were not found in the right hand analysis. It is 

difficult to interpret these results as there are many fewer studies per analysis when stratified by 

handedness and time scale, which greatly lowers the statistical power in these comparisons.  


