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Introduction 

Motor learning involves processes that develop with experience, which changes an individual’s 

behaviours and internal state. These processes are evidenced by “…relatively permanent 

improvements in the potential or capability for skilled behaviour” (Schmidt & Lee, 2011, p.327). 

Examples of processes or internal states that change with learning are: attention, memory, 

perception and neuromuscular patterns of activation. Although developmental influences, such 

as a learner’s physical and cognitive maturation, will affect an individual’s capability for skilled 

behaviour, motor learning is specifically defined with respect to changes that occur as a 

consequence of experience or dedication to practice. Other terms that also refer to the 

phenomenon of motor learning are: motor skill acquisition, perceptual-motor learning, 

psychomotor learning, and sensorimotor learning.  

Effective practice for motor learning tends to be goal-oriented and may be as few or as 

many trials as demanded by the complexity of the task and the corresponding skill of the learner. 

Improvement in an individual’s capability for skilled movement may consist of a change in 

quality of movement production (such as increased motor efficiency leading to decreased energy 

expenditure, faster reaction time, and greater force production) and/ or a greater likelihood of 

success in achieving desired outcome goals, such as improvement in response consistency or a 

reduction in error. Researchers are often concerned with determining how these variables 

relating to learning efficiency and effectiveness can be improved through manipulations to 

information and conditions of practice; such as instructions, feedback and task scheduling.  

Though learning is best indexed by changes in behavioural outcomes, the processes and 

internal states influencing an individual’s current performance are not necessarily related to 

learning. For instance, fatigue after a long practice session may result in markedly diminished 

performance, or the presence of a monetary incentive could spur an individual to an elevated, but 

atypical level of performance. Thus, immediate conclusions made on the efficacy of a practice 

intervention could be masked by these temporary performance factors. Hence researchers control 

for the impact of such performance factors on assessments of learning by measuring 

performance on a retention or transfer test, typically administered after a period of delay known 

as the retention interval (see Sections 4.1-4.2 for further discussion). The “gold standard” for the 
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retention interval that motor learning researchers apply is ~24 hours, but others have measured 

performance for longer periods in order to make conclusions about stable changes in 

performance and the degree of forgetting.  

Learning is also possible without any overt changes in performance. Sometimes this is 

referred to as “overlearning” (Schmidt & Lee, 2011), which manifests as a period of 

performance plateau or saturation during practice. While there are no indicators of behavioural 

change, changes are occurring in the processes underpinning motor control. As an illustration, 

attentional processes tend to shift from more “controlled” to more “automatic” (i.e., from 

attentionally-demanding to not demanding) with increased skill (Fitts & Posner, 1967). While 

there may not be an overt change in performance, as skill execution becomes more autonomous, 

an individual is better able to simultaneously perform a secondary, attentionally-demanding task 

without interference (see Section 3.1). A lack of change in performance may also signal a failure 

to measure appropriate aspects of performance or use a sensitive enough measure (such as 

moving from looking at outcomes to movement form or from number of target hits to millimetre 

differences in target accuracy). 

Primary theories, frameworks and associated concepts 

We discuss four general theoretical approaches which are most frequently cited in motor 

learning research. These comprise: 1) cognitive/ information-processing, 2) ecological dynamics, 

3) neurophysiological models and mechanisms, and 4) psycho-social perspectives. These 

approaches reflect differential emphasis on internal “representational” processes (information 

processing) versus non-representational, behavioural dynamics’ approaches (ecological 

dynamics), as well as different levels of analysis (neurophysiological) versus behavioural. They 

also result from differences in methods and experimental tasks, which we expand upon below 

(e.g., discrete actions versus continuous actions).   

 Cognitive / information-processing 

Cognitive information-processing accounts share similarities in that these approaches to motor 

learning are heavily influenced by determination of the cognitive processes which mediate 
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performance and learning. Error processing and feedback are important facets of these theories 

and frameworks detailed below. 

Adam’s closed-loop theory 

Adam’s closed-loop theory emphasizes the importance of processing information related to 

movement outcomes (or knowledge of results) and sensory feedback for motor learning (Adams, 

1971). Two traces or states of memory are thought to guide movement. The memory trace 

provides the motor commands to drive the initial portion of a movement, while the perceptual 

trace provides a “reference of correctness”. This latter memory state is important for the 

detection of discrepancies between sensory feedback and an intended movement, affording what 

is termed “closed loop” (feedback-based) control until movement completion. Experience 

strengthens these memory traces.  

In initial learning, when an individual does not have correct experiences of a motor skill, 

the perceptual trace of the correct movement would be weak as there are relatively few correct 

movement traces compared to incorrect traces. The learner is heavily dependent on outcome-

related feedback, typically provided by external sources, to help guide any repetitions if the task 

goal was not achieved. As the performer improves with practice, the perceptual trace for the 

correct movement increases in strength, as a relatively large number of correct perceptual traces 

are accumulated compared to incorrect ones. Dependence on external feedback diminishes as the 

correct perceptual trace is strengthened and proficiency increases.  

 One of the long-lasting legacies of this theory is the importance placed on various types 

of feedback for minimizing error and guiding performers towards increasing accuracy. With 

practice, there is an increased reliance on response-produced sensory/ intrinsic feedback rather 

than externally provided/ augmented feedback. This theory prompted much research into the role 

of feedback for motor learning and the importance of the development of error-detection 

mechanisms for effective motor performance. Although the theory is still widely cited in many 

text-books, it is rarely cited in current motor learning research. 

Schema theory 
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Schema theory was developed by Richard Schmidt, a student of Adams (Schmidt, 1975). The 

main difference between this theory and that of Adam’s is that in schema theory, the movement 

can be controlled by the motor trace (or motor program) and executed without influence from 

sensory feedback (termed “open-loop” control). As such, the motor program contains motor 

commands which are specified in advance of the movement. This idea of a motor program was 

not, however, unique to schema theory (e.g., Keele, 1968). As with Adam’s theory, there are two 

memory states: 1) the recall memory/ schema, which controls movement execution, and 2) the 

recognition memory/schema, which provides a reference of correctness for comparing sensory 

feedback, allowing for error evaluation at the end of the movement or after the motor program 

has run. Similar to closed-loop theory, feedback is essential for motor learning in schema theory, 

as knowledge of movement outcomes is necessary for developing the recall and recognition 

schemas. 

A key aspect of schema theory for motor learning is the idea that individuals acquire 

“generalized” motor programs (what are often referred to as “GMPs”). Rather than specific 

programs for every action, the idea was that individuals develop and store abstract 

representations for a class of motor skills which contain “invariant” features (e.g., the proportion 

of time between onset and offset of muscles, which stay relatively consistent despite changes to 

the effectors used or the overall duration of an action). With practice, relations are developed 

between specific parameters (i.e., overall timing, overall force, the limb or muscles used) as well 

as contextual factors and various outcomes or sensory consequences. These relations are referred 

to as schemas. For instance, to pitch a baseball to a catcher, a pitcher would have stored a 

template of a pitch which would contain relatively invariant features. Taking into account the 

desired outcome (e.g., a 60 ft pitch) and contextual conditions, they would specify the effector 

(e.g., dominant right arm) and the absolute force (e.g., 15 N) that would be needed to cover the 

desired distance. Even if the pitcher had not pitched that distance before, if they had pitched to 

similar distances, they would be able to use the stored schema to select parameters which would 

likely produce the novel action. Hence, schema theory provides an explanation for how 

individuals are able to execute novel variations of a motor task with unexpected proficiency. 

In contrast to closed-loop theory, errors during practice are not detrimental for learning as 

they provide information which informs the schema. Considerable empirical evidence exists 
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supporting this idea through what is known as variability of practice research (van Rossum, 

1990). More variable practice around a criterion task tends to lead to poorer immediate 

performance than constant practice of the same task, but importantly results in more robust long-

term learning and transfer to new, unpractised conditions (e.g., Shea & Kohl, 1991). Variation in 

task parameters strengthens the recall and recognition schemas for a motor skill such that with 

increased movement experiences, not only is execution accuracy increased via the recall schema 

(i.e., correct selection of parameters), but the recognition schema gives a more accurate 

prediction of anticipated sensory effects, improving fast, feedforward-based error detection. As 

stated below, these ideas concerning feedforward and feedback based error correction strategies 

are central to computational theories of motor control and the idea of internal models, which 

have tended to dominate laboratory-based research into motor learning processes over the past 

decade. 

Internal models 

Motor learning entails the mastery of sensorimotor transformations or mappings relating motor 

commands to sensory feedback. Computational neuroscientists and engineers have made 

significant progress in studying and modeling how these transformations are learned through the 

concept of internal models (e.g., Wolpert, Ghahramani & Jordan, 1995; Wolpert, Miall & 

Kawato, 1998). Major overlaps exist between the functions of internal models and memory 

representations based on schema theory. Two types of internal models have been conceptualized. 

Analogous to the concept of recognition memory in schema theory, the forward model captures 

the causal relationship between inputs (motor commands) and outputs (sensory consequences) of 

the motor system in a given context. The function of the inverse model is similar to recall 

memory in that it inverts the causal relationship between sensory consequences to motor 

commands to provide an estimation of the motor commands for generating a desired outcome. 

To acquire and maintain reliable internal models for motor control, an individual learns 

to associate repeated pairings of motor commands with the corresponding sensory consequences. 

For learning or behavioural adaptations to take place and for these internal models to be updated, 

the learner must experience a discrepancy between the expected and actual sensory 

consequences as a result of movement execution. Hypothetically, a copy of the motor command 
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is generated, termed an “efference copy”, which interacts with the forward model to give a 

prediction of the sensory consequences of an action (i.e., feedforward processing). When 

discrepancies are experienced, both the forward and inverse internal models are updated, so that 

motor commands are essentially modified to suit the new sensorimotor mapping. It has been 

suggested that the forward model is updated before the inverse model and plays a role in the 

training of the inverse model. 

Empirical work on internal models is typically based on what are termed visuomotor or 

dynamical (force-field) adaptation tasks. In adaptation studies, perturbations are introduced so 

that a sensory discrepancy is experienced, requiring modifications to motor commands. With 

sufficient practice, learners adapt to the perturbation and error is reduced (e.g., aiming to targets 

which are inverted or rotated). Upon removal of these perturbations, “after-effects” are noted, 

which are compensatory actions opposite to the direction of the perturbation. These after-effects 

arise even when performers are informed that the environment is normal and hence are 

unintentional (or implicit). They are taken as evidence that a performer’s internal models or 

sensorimotor mappings for the task have been updated and hence some learning has occurred. 

Recent debates in this area are often centred around the neurophysiological mechanisms 

underpinning the various models and the independence of error signals which drive implicit 

updating and explicit /strategic changes to motor plans (e.g., Huang & Shadmehr, 2007; Taylor 

& Ivry, 2014). 

Cognitive effort and challenge 

Motor learning is not merely influenced by the amount of practice, but also by the quality of the 

practice. Two well studied practice conditions are often cited in support of practice quality 

effects on motor learning; the contextual interference effect (Shea & Morgan, 1979), related to 

practice organization of multiple skills and the guidance hypothesis (Winstein & Schmidt, 1990), 

related to the impact of augmented feedback on motor learning. 

An interference that occurs when a motor skill is practised in the context of other skills is 

termed the contextual interference (CI) effect. This interference is actually good for longer-term 

learning, but not for short-term performance. When practice is organized in a more random 

manner, by interleaving the practice trials of all skills so that each skill is typically not repeated 
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more than once, overall performance is degraded in comparison to blocking practice. In blocked 

practice, trials of one skill are performed repetitively before switching to practice on the next 

skill, such that CI is low. However, on retention or transfer tests, an “acquisition-retention 

reversal” is typically observed, where the presence of greater interference in the practice context 

(random practice) results in long lasting learning benefits compared to low interference blocked 

practice. These CI effects are thought to be due to differences in cognitive-processing activities. 

Random practice promotes deeper processing and understanding of each skill (“elaborative 

processing hypothesis”; Shea & Zimny, 1983) or/and increased cognitive effort in organizing 

plans of actions during practice (“forgetting and reconstruction hypothesis”; Lee & Magill, 

1983) compared to blocked practice. In general, conditions that make practice more challenging 

or effortful are more beneficial to motor learning.  

Research on the guidance hypothesis underscores the importance of practice quality, 

related to cognitive processing, on motor learning. The guidance hypothesis arose out of research 

related to the frequency and timing of augmented (also termed extrinsic) feedback, particularly 

information related to the outcome of the movement, termed knowledge of results (KR). 

Augmented feedback, which can be provided by a coach or teacher, or perhaps by some 

technical device such as a phone video app, serves to guide the learner through the immediate 

highlighting of errors in performance. However, when provided too soon or too frequently, 

augmented feedback can be detrimental to learning, eliciting an acquisition-retention reversal as 

discussed for the CI effect. So for example, more frequent KR (e.g., KR provided on 100% of 

trials) is detrimental to learning relative to less frequent KR (e.g., Sullivan, Kantak & Burtner, 

2008). 

According to the guidance hypothesis, the prescriptive aspect of KR prevents individuals 

from processing their own intrinsic feedback, thus impairing error detection and correction 

processes. The result is that learners become dependent on the extrinsic KR feedback and are 

unable to apply appropriate adjustments or corrective strategies when this source of feedback is 

unavailable. Withholding or delaying KR or providing summary feedback only after several 

trials serves to reduce the guidance effects of KR on motor learning (Schmidt & Lee, 2011). 

When participants have been asked to estimate their error on each trial before receiving KR on 

100 % of the trials, this strategy has also been effective in reducing the negative retention effects 
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of practising with a high frequency of KR (e.g., Guadagnoli & Kohl, 2001). Here, engaging in 

effortful activities related to detection of error benefited learning. 

The principle common to both contextual interference and the guidance hypothesis of 

augmented feedback is that effortful or challenging practice benefits learning while potentially 

suppressing practice performance. Yet, there are documented cases where too much challenge 

was found to be a hindrance to learning. For instance, when random and blocked practices were 

separately administered to two groups of novices that were learning a nominally (or inherently) 

difficult task, longer-term learning in the random practice group was diminished compared to the 

blocked practice group (Guadagnoli, Holcomb & Weber, 1999). It was argued that task and 

individual factors moderated the gains that could be attained from incorporating challenge into 

practice. Guadagnoli and Lee (2004) proposed the challenge point framework to help explain 

how challenge and learning interact. A moderate degree of practice challenge or what they term 

“functional task difficulty” is optimal for learning. Functional task difficulty is a measure of 

difficulty that accounts for the interaction of nominal task difficulty and a performer’s skill level. 

According to the challenge point framework, practising at a functional task difficulty level too 

low or too high for an individual is sub-optimal for learning. The challenge point framework 

nicely illustrates the relation between short-term performance in practice and longer-term 

learning. Performing at a more challenging level in practice, which would result in poorer short-

term performance, should lead to more gains in terms of learning and improvement than that 

associated with low challenge and low error practice. 

Ecological dynamics 

A departure from the cognitive perspectives discussed thus far, and borrowing key ideas from 

ecological psychology and complex dynamical systems to theorize about human motor learning, 

an ecological dynamics approach to understanding learning processes was developed (also 

referred to as a constraints-led approach; e.g., Davids, Button & Bennett, 2008; Kelso, 1994; 

Kugler & Turvey, 1988; Newell, 1986). The ecological dynamics approach was established on 

the notion of self-organization in biological systems, where adaptive movement behaviours 

emerge from continuous interactions between individuals, their task, and the environment in 

which they perform. An example of self-organization can be seen in gait transition as speed of 
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locomotion is increased in a walking individual. As speed (the control parameter) increases, the 

relative timing and step characteristics (order parameters) are spontaneously re-organized to 

transition from walking gait to jogging gait. Self-organization is also seen in coordination 

dynamics research involving bimanual inter-limb movements. Decoupling the limbs to perform 

relative phase patterns other than in-phase (symmetrical flexion/extension of both limbs, 0° 

phasing) or anti-phase (alternating flexion/extension, 180° phasing), which are termed intrinsic 

attractors, is difficult and produces instability. With increasing movement velocity, that is, a 

change in some control parameter, the dynamical system will transition back to a more stable 

attractor state (Haken, Kelso & Bunz, 1985). Hence, learning is conceptualized as a change in 

the attractor landscape and one of self-organization and stability/instability transitions. Where 

previous, more cognitive based theories have been good at describing and explaining discrete 

actions or sequences of action (with clearly defined beginning and end points), continuous 

actions have been well described through an ecological dynamics approach.  

Behavioural outcomes in such self-organizing systems are considered to be mostly 

independent of high-level executive input and are governed by structural (body-related) and 

informational (visually-related) constraints. Movement “patterns” that emerge are a result of 

perception-action coupling, wherein perceptual information guides or regulates action directly, 

independent of any type of preplanned motor program. A fundamental feature of the ecological 

dynamics approach to motor learning is that there is inherent neurobiological “degeneracy” in 

the perceptual and action systems (Edelman & Galley, 2001). This means that multiple 

functionally equivalent ways of attaining the same outcome goals can be generated through 

various biomechanical configurations of the physical body. Degeneracy is illustrated in the 

different types of passes a Frisbee player could make (e.g., forehand, backhand, hammer throw) 

and biomechanical variations in which these passes may be executed that would achieve the 

same performance outcome of hitting a target. A Russian scientist, named Nikolai Bernstein, was 

one of the first researchers to consider the influence of context and fluctuations in the internal 

and external factors impacting skill performance (Bernstein, 1996). He posited that the same 

motor commands would not achieve identical outcomes from one trial to another, as the internal 

states vary in an individual from trial to trial due to inherent noise in the motor system. The same 

could be said for the variability in the performance context. Accordingly, it is the process of 

solving variations of motor problems that prepare a learner to adapt to ever-changing interactions 
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in constraints. Bernstein advocated for variability in practice that encourages exploration of 

motor solutions that achieve the same task objective, rather than mere repetitive practice of a 

single motor solution. This guideline for structuring practice is especially applicable to 

acquisition of “open skills” (see first paragraph of the Psycho-social perspectives).  

A constraint-led framework is often adopted to promote motor learning under the 

ecological dynamics approach. Imposing various task (e.g., equipment or rule adaptation) and/or 

environmental constraints (e.g., weather, playing surface), given the individual constraints (e.g., 

age, skill level), can direct learners to “specifying information” (i.e., relevant information for 

regulating a movement) and “affordances” (i.e., movement possibilities). A constraints-led 

coaching or instructional design is founded on ecological dynamics principles and the idea that 

behaviours emerge as a consequence of manipulation to constraints rather than as a result of a 

specific aim to produce one type of motor pattern or solution (Davids et al., 2008). Whilst there 

is considerable evidence that constraints can change behaviours in the absence of specific 

intentions to change, there is less evidence that this way of instructing, where movements are 

brought about through a discovery and constraints heavy environment is better for performance 

and learning than a more prescriptive approach where learners are directed to a particular motor 

solution. Importantly, both an information processing and constraints-led approach to behaviour 

change would encourage active effort on the part of the learner, with practice environments that 

are designed to maximize the match between conditions encountered in test or competition. 

Neurophysiological models and mechanisms 

With advancements in technology and increased accessibility to brain imaging and 

neurophysiological tools, researchers have begun to detail the neural processes and circuitry 

involved in motor learning (e.g., Seidler, 2010). These neural processes have been detailed in 

relation to memory consolidation (e.g., Shadmehr & Holcomb, 1997), that is, the offline 

processes that take place outside of practice, which serve to make short-term memories more 

long-term. As well, these processes have been detailed with respect to different forms of learning 

such as use-dependent, error-based, and reinforcement learning (e.g., Huang, Haith, Mazonni & 

Krakauer, 2011).  
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Neurophysiological work on use-dependent (also known as Hebbian) learning has shown 

that movement repetition induces short-term neural plasticity (e.g., Classen, Liepert, Wise, 

Hallett & Cohen, 1998). In Hebbian learning, when a neuron fires and elicits activity in another, 

or when a stimulus elicits a certain pattern of neural activity, the synaptic connections between 

these neurons strengthen (a cellular process known as long-term potentiation, LTP). This 

strengthening means that the stimulus will tend to elicit the same neural activity on subsequent 

occasions. The reverse, that is a lack of/no association between neural activity and synaptic 

connections result in long-term depression (LTD), a weakening in the strength of synaptic 

transmissions. Repeated elicitations of such synaptic connections are strengthened irrespective of 

feedback regarding error or outcome efficacy in Hebbian learning. Hebbian learning is 

underpinned by neural plasticity within and between areas of the cerebral cortex, including the 

primary motor and somatosensory cortices (Buonomano & Merzenich, 1998; Classen et al., 

1998). In supervised or error-based learning, feedback is pertinent for error correction and 

adaptation to a changing environment (Seidler, Kwak, Fling & Bernard, 2013). Augmented or 

intrinsic sensory feedback, containing information on magnitude and direction of error, is used to 

update subsequent motor commands and predictions of sensory consequences. Error-based 

learning is thought to be driven by neural plasticity (particularly LTD) in the cerebellum, which 

is based on sensory prediction errors (e.g., Diedrichsen, Hashambhoy, Rane & Shadmehr, 2005; 

Ito, Yamaguchi, Nagao & Yamazaki, 2014).  

A reinforcement learning mechanism is also thought to be involved in learning from 

errors, involving the midbrain dopamine system, anterior cingulate cortex (ACC), basal ganglia, 

and other higher brain-level cortical areas. When consequences of a response are worse than 

predicted, a negative dopaminergic signal (i.e., decrease in dopaminergic neuronal firing) is 

elicited and projected to various cortical structures. This dopamine signal reaches the ACC and 

results in neural disinhibition, which can be seen by EEG (electroencephalography) measures of 

Error Related Negativity (ERN) in frontal/central regions of the brain (Holroyd & Coles, 2002). 

When consequences are better than predicted, the dopamine signal is reversed. Dopaminergic 

neurons in other cortical regions also show phasic activations corresponding to rewards and 

reward-predicting stimuli that appear to be crucial for reinforcement learning (as well as memory 

consolidation, see next paragraph; McGaugh, 2000; Wadden, Borich & Boyd, 2012). At the 

cellular level, dopamine influences synaptic plasticity via LTP and LTD. Notably, when 
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dopaminergic projections to the primary motor cortex were blocked (through surgical lesions) in 

rodents, new skill learning was reducedd while existing skills were not impacted (Hosp, 

Pekanovic, Rioult-Pedotti & Luft, 2011). 

Memory consolidation processes are also linked to neurobiological evidence alluding to 

the importance of dopamine for learning. These consolidation processes are subsumed within the 

definition of motor learning. Consolidation refers to offline neurobiological processes that serve 

to stabilize or enhance memory, whereas motor learning is the relatively permanent 

improvement in capacity for skilled movement that is due to both online (during practice) and 

offline processes, that happen at all levels of the sensory-motor system. During memory 

consolidation, neurophysiological processes influence a memory trace in two distinct time 

frames (Karni et al., 1998). The fast (synaptic) consolidation involves synaptic protein synthesis 

and strengthening of synaptic transmissions that are active during skill performance. The slow 

(systems) consolidation, which can last for weeks, involves reorganization of neural networks. 

Memories, which were encoded and dependent on the hippocampus for retrieval, are relieved of 

this dependency and moved to the neocortical system for long-term storage through this slow 

system. Both types of consolidation are necessary to induce permanent changes to memory and 

motor skills.  

Events that happen during practice and post-practice can impact memory consolidation, 

serving to augment and facilitate or negatively impact and interfere. For example, immediate 

practice of a counter-rotation after first adapting to an opposite visuomotor rotation (a virtual 

environment whereby visual feedback representing hand movement is rotated in relation to 

actual hand movement) usually induces (retroactive) interference resulting in significant 

reduction in retention of the first rotation (see discussion on visuomotor adaptation in final 

paragraph of “internal models” discussed above and “transfer” in the final sections below). In a 

task involving fast rhythmic finger movements, a non-invasive electromagnetic procedure that 

interferes with local brain function, known as repetitive Transcranial Magnetic Stimulation 

(rTMS), disrupted memory consolidation when applied to the primary motor cortex immediately 

after practice (Muellbacher et al., 2002). A lack of sufficient sleep or rest after skill practice has 

also been shown to interfere with consolidation processes. For example, when learners were 

sleep-deprived on the first night after a practice session, they showed less pronounced offline 
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improvement in a motor sequence task at a 48-hour delayed retention test, compared to learners 

who had two regular nights of sleep after practice (Fischer, Hallschmid, Elsner & Born, 2002). 

Psycho-social models 

The psychological construct of motivation, defined as the direction, intensity and persistence of 

effort in certain behaviours (Vallerand & Thill, 1993 as cited in Crocker, 2007), has received 

renewed attention as a potential motor learning mechanism. Motivation is thought to influence 

motor learning based on processes related to competence, social-relatedness and autonomy (Deci 

& Ryan, 2000). Although motivation has always been regarded as important in exerting 

temporary energizing effects on performance and the quality or amount of practice, researchers 

have  accumulated evidence supporting the idea that motivation-related processes have a direct 

impact on motor learning. This has led Wulf and Lewthwaite (2016) to propose the OPTIMAL 

(Optimizing Performance Through Intrinsic Motivation and Attention for Learning) model. The 

OPTIMAL model groups together learning related effects that are thought to be driven through 

the satisfaction of basic psychological needs of competence and autonomy coupled with an 

externally-related attentional focus. Practice interventions that enhance expectancies in 

performers (e.g., self-efficacy, perceived competency, or success expectations) and perceived 

autonomy (a sense of agency and control) have benefited motor learning.  

The authors of the OPTIMAL model propose that meeting the basic psychological needs 

of competence and autonomy increases energy expenditure, cognitive effort, and positive affect, 

which exerts a positive impact on motor performance and learning. Elevated competency 

perceptions and autonomy also tend to be associated with other cognitive and attentional states 

that have enhanced performance and learning, such as improved goal setting, concentration, 

adoption of an external focus of attention, or lowered debilitating concerns about one’s lack of 

ability. Neurobiochemical processes related to consolidation and dopamine release have also 

been used to explain how motivation might directly impact motor learning. Although the 

OPTIMAL model is based on empirical evidence and combines a variety of potential effects and 

mechanisms into an integrated model, it is relatively new and awaits verification. Because of it’s 

a rather all-encompassing framework, it is difficult to refute the model, but there has been 

evidence that serves to question the moderating role of motivation in learning effects (e.g., 
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Carter, Smith & Ste-Marie, 2016; Ong, Lohse & Hodges, 2015). On the positive side, this model 

has led to a greater appreciation of psycho-social influences on mechanisms of motor control and 

learning, which until now had mostly been at best controlled or at worst, discounted or ignored.   

Learning Phases and Stages 

Researchers and practitioners have noted certain patterns and characteristics of performance as 

motor skills are acquired, which has led to various conceptualizations about phases or stages that 

describe learning and the progression through skill levels (from novice/beginner to expert). 

While these stages are sometimes described as discrete and separated in such a way as to appear 

independent, most researchers acknowledge that skill progressions are likely blended and 

continuous in nature. Moreover, there is consensus that there is considerable variation between 

individuals with respect to how they learn. In this way, phases represent general observations 

about processes likely to be operating at a specific point in time, rather than being predictive of 

how people will learn when looking across different time scales. Below we consider two primary 

ways skill progressions have been considered, which we have broadly divided into progressions 

based on higher level cognitive processes and progressions based on lower-level motor system 

reorganization. However, we also acknowledge that these phases have also been considered on a 

computational level (e.g., in terms of fast and slow processes) at a brain systems level (e.g., in 

relation to progressions from cortical to cerebellar brain structures) as well as at a cellular level 

(related to potentiation of neurons and synaptic connections), which we do not discuss here.   

Progressions in learning based on a reduction or change in higher-level, cognitive processes 

Several theorists have proposed that acquisition of motor skills begins in a cognitively 

demanding (“cognitive”) stage (e.g., Fitts & Posner, 1967). In this stage, performance is initially 

characterized by large errors and inconsistency. Working memory and attentional resources are 

heavily tapped during this early stage of learning, referred to as “controlled processing” 

(Schneider & Shiffrin, 1977). Novice performers are thought to consciously control skill 

execution, attending to how the skill is performed and the mechanics of the action. Declarative 

knowledge (i.e., facts, rules and strategies) on “what to do” (or what not to do) is accumulated in 

the cognitive stage (e.g., Anderson, 1982). If learners are overloaded with a second task to 
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perform, a decrement in performance (or interference) is likely to be observed on either or both 

tasks. In this stage, performance tends to improve quickly (i.e., exponentially – or what has been 

referred to as the power-law of practice; Crossman, 1959; Newell & Rosenbloom, 1981) and 

consistency in outcome attainment and movement production typically improves in concert with 

overall accuracy. People have referred to graphs illustrating acquisition rate over time, with 

respect to some measure of performance, as performance or learning curves (Schmidt & Lee, 

2011). These can be at an individual or group (mean) level. The rate of acquisition is aided by 

such methods as instructions, error feedback, appropriate task-constraints and observational 

learning, which enable the performer to generate an adequate movement solution and get the 

movement “in the ballpark”.  

Subsequent to the cognitive stage, performance continues to improve with practice, 

although the gains are usually gradual past the initial stage of learning. This intermediate, 

“fixation” stage (Fitts & Posner, 1967) may consist of periods of trial and error or discovery of 

motor solutions, in which skill execution is likely to mostly be defined by controlled processing. 

As performances become more consistent and biomechanically-efficient, movement production 

becomes more autonomous. Hence the final stage of learning is aptly named the “autonomous” 

stage (Fitts & Posner, 1967). Here, performance error is low and outcome consistency high. 

Instead of relying on declarative knowledge, learners have proceduralized their knowledge on 

“how to” perform the task, such that it is less accessible to conscious awareness and hence less 

verbalizable. Skill execution occurs with automaticity or “automatic processing”, meaning little 

cognitive effort or attention is required for the skill to be performed well. With automatic 

processing, a performer is able to perform a second task with little to no interference. There are 

many sport-related empirical studies showing that expert performers (e.g., in golf) are able to 

perform just as well in a single-task condition (e.g., putting only) as under second-task 

conditions (additional performing a listening word search task; e.g., Beilock & Carr, 2001). 

Given that such findings define skilled but not novice performers, suggests that with advancing 

skill, a level of automaticity in the primary task allows resources to be allocated to other tasks 

(such as monitoring other players or reading the lay of the ground in putting).  

At the autonomous stage, performance can be negatively impacted by an inward shift 

towards the self, known as “self-focused attention”, or skill-focused attention, which is a shift 
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towards use of declarative knowledge and step-by-step conscious processing of skills (e.g., Gray, 

2004; Wulf, 2013). Other concepts similar to the skill-focused attention are the “explicit 

monitoring hypothesis” (e,g., Beilock & Carr, 2001), “constrained action hypothesis” (e.g., 

Wulf, McNevin & Shea, 2001), and the “reinvestment hypothesis” (e.g., Masters & Maxwell, 

2004). The principle central to these accounts is a hypothesized regression towards an early 

cognitive control stage and monitoring of skill that interferes with automaticity and effectiveness 

of skill execution. In high-stake contests, this regression leads to performance akin to “choking”, 

the term that describes uncharacteristic performance decrements for an individual performing 

under pressure conditions. In accordance with the reinvestment hypothesis, experienced 

performers would be more likely to “choke” under stressful or attention-demanding situations if 

they accumulated a wealth of declarative knowledge early in learning (i.e., in the cognitive 

stage). This propensity for reinvestment is not only dependent on how skills were acquired and 

the amount of declarative knowledge, but also on characteristics of the individual and their 

propensity to reinvest (Masters, Polman & Hammond, 1993). 

Although there is significant evidence that motor learning of novel skills is typically 

defined by explicit, declarative processes related to how to perform, this way of learning is not 

necessarily ubiquitous for all skills, nor is it necessarily the best way of learning. We can learn to 

kick or throw a ball, or jump without explicit knowledge as to how we are performing these 

skills. To learn implicitly refers to acquisition of a skill without conscious awareness of the 

products of learning or regularities that govern performance success. In other words, implicit 

motor learning bypasses the accumulation of declarative knowledge while procedural knowledge 

is acquired (e.g., Masters & Maxwell, 2004). In contrast, explicit motor learning normally 

follows guided or prescriptive learning environments, whereby learners become consciously 

aware of knowledge (e.g., task-structure, strategies) relevant to the skill they have acquired. 

Patients with amnesia who acquire new motor skills provide evidence for this implicit mode of 

learning, as while these patients have clearly acquired procedural knowledge to perform the 

tasks, they can neither recollect the learning experience nor verbally report explicit knowledge 

relevant to the skill (Nissen, Willingham & Hartmann, 1989). There is some empirical evidence 

that practice methods which are more implicit in nature, such as progressing through practice 

environments where errors are minimized (e.g., easy to difficult) or providing instructions that 

promote an external focus of attention, are effective for preventing performance decrements 
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when participants later are tested under high stress or high task demands that exceed attentional 

capacity (e.g., Maxwell, Master, Kerr & Weedon, 2001; Ong, Bowcock & Hodges, 2010; Wulf 

2013). By learning implicitly, learners avoid accumulating declarative or explicit knowledge of a 

skill and hence do not reinvest or revert to a conscious mode of control under pressure which 

could hamper performance.  

Learning progressions based on lower-level, motor-system adaptations 

The idea of spontaneous neural reorganization (i.e., self-organization) as a result of experience is 

central to ideas about motor behaviour being an emergent property of various internal and 

external constraints. Consistent with what is now termed the ecological-dynamics perspective 

(Davids et al., 2008; Kelso, 1994; Kugler & Turvey, 1988; Newell, 1986), the Russian 

physiologist Bernstein, proposed that motor behaviour generally and motor learning more 

specifically could be conceptualized as a problem of solving degrees of freedom (Bernstein, 

1996). He argued that a central command system in the brain, like that defined in early ideas of a 

motor program, would be overwhelmed with the copious degrees of freedom (i.e., independent 

units or dimensions) that would need to be controlled for successful motor skill execution. For 

example, in an underarm softball pitch to a batter, at least 20 muscles would require independent 

specification, at any point of time in the movement.  

To overcome the degrees of freedom problem, Bernstein postulated that the first stage of 

learning essentially involves a constraining or freezing of some degrees of freedom. By fixating 

certain muscles/joints, or coupling the movement of one muscle or joint to another, such as seen 

in the inefficient co-contraction of agonist and antagonist muscles around a joint, computational 

load at any given point in time is reduced. In the softball-pitching example, a novice pitcher can 

limit the movements in the elbow and wrist joints, relying only on the rotation around the 

shoulder to generate momentum for ball release. As learning progresses, there would be a 

‘freeing’ of these degrees of freedom and an associated increase in independence between joints 

or muscles. Correspondingly, relative motion of joints involved in a motor task become less 

coupled and manifest as decreased correlation in relative motion between joints (see Newell & 

McDonald, 1994; Vereijken, Emmerik, Whiting & Newell, 1992). In the softball-pitching 

example, we might see a decrease in correlation between the relative motions of the elbow and 
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wrist joints as the pitcher starts to flex the elbow and wrist joints at different moments in the 

pitch. In the final stage of motor learning, it is proposed that the motor system becomes more 

mechanically and energy efficient through exploitation of the mechanical-inertial properties of 

the limbs (e.g., extension of the more proximal shoulder joint would result in passive torques at 

the more distal elbow and wrist joints). Higher-skilled softball pitchers are more likely to exploit 

the dynamic interactions between joint motions, activating different muscle groups at different 

times during the pitching motion, so as to maximize the angular momentum transferred to the 

ball at release. 

 Depending on the nature of the task, tighter couplings between joints could also be seen 

at a more advanced stage of learning. The emergence of coordinative structures, that is relations 

between components of the motor system that serve a functional purpose, with increasing 

expertise, might reflect better control of task-relevant versus non-task relevant variability. 

Couplings that emerge later in practice will be those that matter most for task success (usually 

the timing and position of distal joints in throwing type actions).  

Learning goals 

It should be apparent to practitioners that the type of task or goal of learning are important 

considerations for structuring practice and assessing learning. Motor skills have often been 

categorized along a continuum of closed to open skills (e.g., Gentile, 1972; Poulton, 1957). 

Closed skills are motor tasks that are performed in a predictable or stable environment, devoid of 

variability that would arise from the influence of external factors, while open skills are executed 

in unpredictable environments subject to external influence.  

Retention 

If the goal of practice is to learn a closed skill or produce only one variant of a motor skill 

accurately and consistently, we would be most interested in the performers’ long-term retention 

of the skill. A retention test typically assesses performance of the same task that was executed in 

practice (Schmidt & Lee, 2011). To enhance learning and best prepare performers to execute the 

practised task under real-world “test” conditions, the practice context should match the test 

conditions as closely as possible. This guideline for structuring practice is known as the 
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“specificity of learning” or “practice specificity” principle (e.g., Barnett, Ross, Schmidt & Todd, 

1973; Proteau, Marteniuk & Lévesque, 1992). As mentioned in the Section “Primary theories, 

frameworks and associated concepts” of this chapter, retention tests are usually administered 

after a period of delay, allowing time for temporary performance influences to dissipate before 

learning is assessed. Absolute measures of performance at retention, especially when compared 

with pre-practice levels or control group levels, provide an indication of the extent of (relatively) 

permanent behavioural changes that have transpired with practice. Relative measures, such as 

difference scores between the end of practice and retention or percentage change in pre-practice 

to retention, offer alternative ways of quantifying learning (or forgetting).  

Some empirical evidence from research on memory consolidation suggests that skill 

retention is impacted by the achievement of performance stability (e.g., Hauptmann, Reinhart, 

Brandt & Karni, 2005). Within a practice session, stability is achieved when the performance 

curve begins to level out, termed asymptotic performance. In addition to practice amount, we 

also know that there are many ways of manipulating practice quality to impact retention. 

Conditions that make practice conditions harder and more effortful are often shown to be the 

conditions which result in the strongest retention effects (Lee, Swinnen & Serrien, 1994). There 

is some minor disagreement about whether delayed tests of learning conducted in the absence of 

a variable present in practice should be called “retention” or “transfer” tests. Regardless of their 

label, we do know that such tests (e.g., the no-KR retention test) provide valuable information 

about what has been retained independently from its potential guiding role in practice. As 

discussed earlier with respect to memory consolidation, events following motor practice can also 

exert positive or negative effects on retention (e.g., rewards, sleep or subsequent practice of new 

tasks) (e.g., Fischer et al., 2002; Larssen, Ong & Hodges, 2012; Stickgold, 2005).  

Transfer 

For motor tasks that are categorized as open skills, a learner’s goal would be to enhance the 

capacity for response adaptability, which increases the odds that optimal movement solutions 

would be selected in varying contexts or under varying constraints. Practice protocols that 

promote problem solving and experience of a variety of movement solutions would allow 

generalizability across a range of performance contexts. In motor learning studies, the capacity 
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for generalization is assessed through transfer tests (Schmidt & Lee, 2011). Transfer is a critical 

measure of learning as rarely are the conditions of practice the same as the conditions of test 

(such as in sports competition or in functional tasks of everyday life following rehabilitation). 

According to the practice specificity principle, transfer would be elicited with increased 

similarity between the practice and criterion tasks. These similarities may be in the perceptual-

motor elements of the tasks and its performance context, or in the cognitive processes underlying 

performance of both tasks (also referred to as transfer-appropriate processing, encoding 

specificity and representative task design; Graf & Ryan, 1990; Lee, 1988; Tulving & Thomson, 

1973; Pinder, Davids, Renshaw & Araújo, 2011, respectively). 

For increased training fidelity, performers would practise in performance contexts that 

are identical or as closely matched to test conditions that they would later be tested on (often 

with added pressure). This type of transfer is referred to as “near” or specific transfer (Schmidt 

& Lee, 2014). Conversely, transfer effects observed with large disparities between the training 

environment and a later test phase would be considered “far” or general transfer. In reality, high-

fidelity training may be cost-prohibitive, risky or difficult to achieve. For instance, the cost and 

risks of training fighter pilots to operate a real aircraft is remarkably greater than training in a 

flight simulator. It is challenging in itself for practitioners to re-create conditions that would be 

experienced by performers under test or match contexts. Besides an interest in structuring 

practice for high-fidelity training, researchers and practitioners are also concerned with questions 

on how “far reaching” the transfer effects of their practice might be. How much dissimilarity can 

exist between practice and criterion skills, or how closely matched must these conditions be, for 

transfer effects to be significant and meaningful? Transfer designs allow a probe of what has 

been acquired and how abstract that learning might be (e.g., if something transfers to the non-

practised hand then we know learning was not specific to the muscles involved in the training 

phase). In this way, transfer tasks help to inform learning theory and can tell us what is acquired 

and the level of specification of learning. 

Transfer can also be considered with respect to how learning episodes of different skills 

potentially facilitate or impede performance and learning of another skill. Proactive transfer is 

the term used to describe how previous practice in one activity impacts on performance of a 

second activity, such as that observed moving from practice playing tennis to squash (Schmidt & 
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Lee, 2011). Another form of transfer is retroactive transfer. This was previously mentioned in 

relation to memory consolidation and it describes how the immediate and subsequent practice of 

a closely related skill could interfere with the performance of a previously practised skill (e.g., 

how tennis is affected from interspersed practice of squash) (e.g., Krakauer, 2009). Researchers 

have shown that retroactive interference from practice of a second skill is possible up to 4-5 

hours after practice of an initial skill (e.g., Brashers-Krug, Shadmehr & Bizzi, 1996; Press, 

Casement, Pascual-Leone & Robertson, 2005). The directional influence of transfer can be 

positive or negative. Positive transfer refers to a facilitative effect and negative transfer indicates 

interference. Transfer effects, whether positive or negative, may be expected between motor 

performances in net-type games, such as in tennis and badminton. Positive transfer may result 

from improved anticipation of an opponent’s actions hence leading to more optimal response 

selection, as comparable tactical decision-making and strategies exist between tennis and 

badminton. However, there is likely to be negative transfer in stroke execution between the two 

activities. The badminton forehand consists of a wrist snap, while the tennis forehand typically 

involves a fixed wrist (except for elite players). Transfer would not be expected from unrelated 

skills that feature vastly disparate perceptual-motor elements or do not share similar cognitive-

related processes. 

Skill refinement, relearning and technique change 

Much of our discussion of motor learning has been focused on acquisition of new skills, 

reflecting the general course of research in the field. Yet, performers often find themselves 

making refinements to their motor responses, whether they are attempting to adjust their 

movements so that performance may be more accurate, powerful or consistent (e.g., greater use 

of legs and shorter pole push while double poling in cross country skiing), or adopting a new 

technique altogether (e.g., Fosbury flop in high jump) while aiming to achieve the same task 

goal. The ease with which performers are able to effect change or refine a skill appears to be 

associated with the level of expertise acquired on an existing motor skill.  

As discussed earlier, one of the distinguishing characteristics of skilled performance is 

the extent to which a motor skill is autonomously controlled without demands on attentional 

resources. Based on this cognitive perspective of motor learning, any modification to movement 
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coordination is arguably easier to accomplish before automaticity is attained. To modify a well-

learned skill in a significant manner (also known as shifting, relearning or habit change), it is 

thought that a performer must first “de-automatize” its control and de-couple existing perceptual-

motor associations to avoid spontaneous and undesired production of the old movement pattern 

in future performance scenarios (Carson & Collins, 2018). Suggested methods to aid movement 

de-automatization have often included some form of explicit comparing, contrasting and cueing 

between a “new way” and the “old way” (akin to cognitive processing described in the 

elaboration hypothesis of the contextual interference effect), followed by extensive practice of 

the new way until automaticity or stability is achieved (e.g., Lyndon, 1989). Depending on the 

performance context, a new technique may be acquired to either replace an old one, or as an 

additional skill to apply in new situations (related to the idea of “bifurcations” in ecological-

dynamics, Davids et al., 2008). How well a new skill is learned is influenced by the degree of 

perceptual-motor and processing similarities between the new and existing skill (see discussion 

on “transfer”). The greater the similarity between the new and existing skill, the greater the 

interference or competition between these skills.  

Due to the scarcity of research on technique change, questions as to whether an existing 

movement pattern can actually be replaced by another, or whether closely related techniques can 

co-exist without competition, remain relatively unanswered. From an ecological dynamics 

perspective, there is evidence that the learning of a new pattern, coupled with increased stability 

of this pattern over time, would change the stability of and appearance of behaviours that are 

“close-by” in terms of coordination demands (e.g., Zanone & Kelso, 1992). This has been 

referred to as a change in the attractor landscape. One interesting observation in dynamics 

research based on motor learning of new coordination patterns, is that these attractors might only 

show up under certain conditions (such as high speeds, high attention demands) (Haken et al., 

1985). As such, undesirable movement patterns can be “replaced” but they may not truly be 

annihilated.  

Technique change can be brought about by direct and indirect means, that is through 

more prescriptive instructional means or through a change to the task constraints forcing 

adaptation on behalf of the learner. For example, both an abrupt and a gradual introduction of a 

novel split-belt treadmill pattern (independent belts for each limb that move at different speeds) 
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led to similarly adapted walking patterns in healthy adults (Roemmich & Bastian, 2015). 

However, the additive effects of an abrupt introduction and extended practice on the novel task 

enhanced retention of the new walking pattern the most. This suggests that an explicit awareness 

of task regularities and characteristics distinguishing a new skill might aid the stability and co-

existence of both new and old skills.  

Summary 

In summary, we have defined motor learning and discussed the various ways it has been studied 

and conceptualized. In addition to thinking about learning at various levels of the motor system, 

including cognitive-levels, neurophysiological and biomechanical, motor learning has also been 

considered with respect to principles based on self-organization under constraints as well as in 

relation to acquisition of memory structures. In motor learning research, considerable evidence 

has accumulated showing that methods which promote active engagement on the part of the 

learner during practice, related to variable practice conditions and active problem solving are 

best for longer term learning. Moreover, when these conditions of practice are most closely 

matched to conditions where test or transfer is required, the efficacy of the practice will be 

heightened.  

With respect to the history and future of the field, there has been a growing trend for 

research and associated theories which are rooted in neurophysiology, likely due to the 

comparative ease today is measuring brain related functioning compared to in the past and 

because of a growing appreciation of skill acquisition principles for rehabilitation. Schema 

theory (Schmidt, 1975) has all but been replaced by internal model based frameworks and 

terminology (e.g., Wolpert et al., 1995), mostly due to a surge in the computational engineering 

fields, where models of control have been formulated to help explain and potentially engineer 

adaptive movements in the fields of robotics. In sport, the constraints-based, ecological 

dynamics framework has had a significant impact in practical coaching settings, although 

empirical, evidence-based interventions for practice methods and instructions are still mostly 

based in cognitive frameworks. With improvements in technology and potential for enhanced 

measurement of actions through wearables, phone apps etc., there is a strong likelihood that 

principles concerning what to do with information, how to design simulations and how best to 
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promote efficient and effective learning and relearning will continue to be developed and 

researched. The future of motor learning from an interdisciplinary perspective looks to be rich 

and vibrant. 
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